Asymptotic Regularity Conditions for the Strong Convergence towards Weak Limit Sets and Weak Attractors of the 3d Navier-stokes Equations

نویسنده

  • RICARDO M. S. ROSA
چکیده

The asymptotic behavior of solutions of the three-dimensional Navier-Stokes equations is considered on bounded smooth domains with no-slip boundary conditions and on periodic domains. Asymptotic regularity conditions are presented to ensure that the convergence of a Leray-Hopf weak solution to its weak ω-limit set (weak in the sense of the weak topology of the space H of square-integrable divergence-free velocity fields with the appropriate boundary conditions) are achieved also in the strong topology. It is proved that the weak ω-limit set is strongly compact and strongly attracts the corresponding solution if and only if all the solutions in the weak ω-limit set are continuous in the strong topology of H. Corresponding results for the strong convergence towards the weak global attractor of Foias and Temam are also presented. In this case, it is proved that the weak global attractor is strongly compact and strongly attracts the weak solutions, uniformly with respect to uniformly bounded sets of weak solutions, if and only if all the global weak solutions in the weak global attractor are strongly continuous in H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On global attractors of the 3D Navier-Stokes equations

In view of the possibility that the 3D Navier-Stokes equations (NSE) might not always have regular solutions, we introduce an abstract framework for studying the asymptotic behavior of multi-valued dissipative evolutionary systems with respect to two topologies—weak and strong. Each such system possesses a global attractor in the weak topology, but not necessarily in the strong. In case the lat...

متن کامل

Oscillatory Perturbations of the Navier Stokes Equations Oscillatory Perturbations of the Navier Stokes Equations

In this paper, we study the convergence of weak and strong solutions of oscillatory perturbations of the Navier-Stokes equations and in particular the asymptotic behaviour of rotating uids and of slightly compressible uids.

متن کامل

The Dynamical Systems Approach to the Equations of a Linearly Viscous Compressible Barotropic Fluid

We develop a dynamical systems theory for the compressible Navier-Stokes equations based on global in time weak solutions. The following questions will be addressed: • Global existence and critical values of the adiabatic constant; • dissipativity in the sense of Levinson bounded absorbing sets; • asymptotic compactness; • the long-time behaviour and attractors. 2000 Mathematics Subject Classif...

متن کامل

Trajectory and global attractors of the boundary value problem for motion equations of viscoelastic medium

Attractors for systems of differential equations or for dynamical systems are the sets to which the solutions of an equation or trajectories of a system are eventually attracted (after damping of transient processes). As a rule, to the condition of attraction one adds the conditions of strict invariance, minimality and compactness. The classical examples of attractors are equilibrium points or ...

متن کامل

Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

We prove that any weak space-time L vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of R satisfies the Euler equation if the solutions’ local enstrophies are uniformly bounded. We also prove that t − a.e. weak L inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003